1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
use rand;
use rand::{Rand, Rng};
use rayon;
use rayon::prelude::*;
use std::sync::{Arc, RwLock};
use std::sync::atomic::{AtomicUsize, Ordering};
use time;
use initial_solution;
use model::{Action, EventIndex, OrderList, State, Time, TravelTime};
pub const STARTING_TEMPERATURE: f32 = 300.0;
pub const ENDING_TEMPERATURE: f32 = 0.5;
pub enum PossibleAction {
Insert,
Remove,
RemoveLowFrequency,
Split,
Push,
}
impl Rand for PossibleAction {
fn rand<R: Rng>(rng: &mut R) -> Self {
match rng.gen_range(0, 100) {
0...19 => PossibleAction::Insert,
20 => PossibleAction::Remove,
21...29 => PossibleAction::RemoveLowFrequency,
30...34 => PossibleAction::Split,
35...99 => PossibleAction::Push,
_ => unreachable!("The RNG just broke, send help!"),
}
}
}
pub struct Solver {
state: Arc<RwLock<State>>,
max_iterations: usize,
total_actions: AtomicUsize,
}
impl Solver {
pub fn new(
order_list: &Arc<OrderList>,
travel_time: &Arc<TravelTime>,
max_iterations: usize,
) -> Solver {
let state = initial_solution::create_greedy_stochastic_state(order_list, travel_time);
#[cfg(debug)]
state.debug_validate();
Solver::from_state(state, max_iterations)
}
pub fn from_state(state: State, max_iterations: usize) -> Solver {
Solver {
state: Arc::new(RwLock::new(state)),
max_iterations: max_iterations,
total_actions: AtomicUsize::new(0),
}
}
pub fn solve(&mut self) -> State {
let starting_time = time::now();
for iteration in 0..self.max_iterations {
let interpolation =
((self.max_iterations - iteration) as f32 / self.max_iterations as f32).powi(2);
let temperature =
ENDING_TEMPERATURE + (STARTING_TEMPERATURE - ENDING_TEMPERATURE) * interpolation;
let (score_delta, actions) = self.next_action(temperature);
let mut state = self.state.write().unwrap();
state.execute_operator(score_delta, &actions);
self.total_actions.fetch_add(1, Ordering::Relaxed);
if cfg!(debug) {
state.debug_validate();
}
if iteration % 10_000 == 0 {
println!(
"Iteration {}/{} :: score: {}, temperature: {}, unscheduled orders: {}",
iteration,
self.max_iterations,
state.score(),
temperature,
state.possible_orders.len()
);
}
}
let elapsed_time = (time::now() - starting_time).num_milliseconds() as f32 / 1000.0;
println!(
"\nTotal elapsed time: {} seconden\nChosen actions per second: {}",
elapsed_time,
self.max_iterations as f32 / elapsed_time
);
println!(
"Iterations per second: {}",
(self.total_actions.load(Ordering::Acquire) as f32 / elapsed_time) as usize
);
(*self.state).read().unwrap().clone()
}
fn next_action(&self, temperature: f32) -> (Time, Vec<Action>) {
let state = self.state.read().unwrap();
let possible_orders: Vec<_> = state.possible_orders.iter().collect();
let scheduled_orders: Vec<_> = state.scheduled_orders.keys().collect();
rayon::iter::repeat(())
.filter_map(|_| {
self.total_actions.fetch_add(1, Ordering::Relaxed);
let mut rng = rand::weak_rng();
let next_action: PossibleAction = rng.gen();
match next_action {
PossibleAction::Insert => {
if state.possible_orders.is_empty() {
return None;
}
let order_id = rng.choose(&possible_orders)?;
let possible_days = state
.orders
.get(order_id)
.map(|order| order.days())
.unwrap();
let order_days = rng.choose(possible_days).unwrap();
let chosen_days: Vec<EventIndex> = order_days
.iter()
.map(|&day| {
let vehicle = rng.gen_range(0, 2);
let segment_id = rng.gen_range(0, state.events[vehicle][day].len());
let segment_length = state.events[vehicle][day][segment_id].len();
let event_id = rng.gen_range(0, segment_length + 1);
(vehicle, day, segment_id, event_id)
})
.collect();
state.try_insert_order(**order_id, &chosen_days).ok()
}
PossibleAction::Remove => {
if state.scheduled_orders.is_empty() {
return None;
}
let order_id = rng.choose(&scheduled_orders)?;
state.try_remove_order(**order_id).ok()
}
PossibleAction::RemoveLowFrequency => {
if state.scheduled_orders.is_empty() {
return None;
}
let order_id = (0..100)
.filter_map(|_| rng.choose(&scheduled_orders))
.find(|order_id| state.orders[order_id].frequency == 1)?;
state.try_remove_order(**order_id).ok()
}
PossibleAction::Split => {
let vehicle = rng.gen_range(0, 2);
let day = rng.gen_range(0, 5);
let segment_count = state.events[vehicle][day].len();
if segment_count == 0 {
return None;
}
let segment_id = rng.gen_range(0, segment_count);
let segment = &state.events[vehicle][day][segment_id];
if segment.len() < 2 {
return None;
}
let split_at = rng.gen_range(1, segment.len());
state
.try_insert_dump((vehicle, day, segment_id, split_at))
.ok()
}
PossibleAction::Push => {
let from_vehicle = rng.gen_range(0, 2);
let from_day = rng.gen_range(0, 5);
let segment_count = state.events[from_vehicle][from_day].len();
if segment_count == 0 {
return None;
}
let from_segment_id = rng.gen_range(0, segment_count);
let from_segment = &state.events[from_vehicle][from_day][from_segment_id];
if from_segment.is_empty() {
return None;
}
let from_index = rng.gen_range(0, from_segment.len());
let order = &state.orders[&from_segment.orders[from_index]];
let to_vehicle = rng.gen_range(0, 2);
let to_day = if order.frequency == 1 {
rng.gen_range(0, 5)
} else {
from_day
};
let segment_count = state.events[to_vehicle][to_day].len();
if segment_count == 0 {
return None;
}
let to_segment_id = rng.gen_range(0, segment_count);
let to_index = rng.gen_range(
0,
state.events[to_vehicle][to_day][to_segment_id].len() + 1,
);
let from_data = (from_vehicle, from_day, from_segment_id, from_index);
let to_data = (to_vehicle, to_day, to_segment_id, to_index);
state.try_push_order(from_data, to_data).ok()
}
}
})
.find_any(|&(score_delta, _)| {
acceptance_chance(score_delta, temperature) > rand::random()
})
.unwrap()
}
}
pub fn acceptance_chance(score_delta: Time, temperature: f32) -> f32 {
if score_delta < 0 {
return 1.0;
}
(-score_delta as f32 / temperature).exp()
}